Metabolism control over growth: a case for trehalose-6-phosphate in plants.

نویسندگان

  • Henriette Schluepmann
  • Lidija Berke
  • Gabino F Sanchez-Perez
چکیده

How plants relate their requirements for energy with the reducing power necessary to fuel growth is not understood. The activated glucose forms and NADPH are key precursors in pathways yielding, respectively, energy and reducing power for anabolic metabolism. Moreover, they are substrates or allosteric regulators of trehalose-phosphate synthase (TPS1) in fungi and probably also in plants. TPS1 synthesizes the signalling metabolite trehalose-6-phosphate (T6P) and, therefore, has the potential to relate reducing power with energy metabolism to fuel growth. A working model is discussed where trehalose-6-phosphate (T6P) inhibition of SnRK1 is part of a growth-regulating loop in young and metabolically active heterotrophic plant tissues. SnRK1 is the Snf1 Related Kinase 1 and the plant homologue of the AMP-dependent protein kinase of animals, a central energy gauge. T6P accumulation in response to high sucrose levels in a cell inhibits SnRK1 activity, thus promoting anabolic processes and growth. When T6P levels drop due to low glucose-6-phosphate, uridine-diphosphoglucose, and altered NADPH or due to restricted TPS1 activity, active SnRK1 promotes catabolic processes required to respond to energy and carbon deprivation. The model explains why too little or too much T6P has been found to be growth inhibitory: Arabidopsis thaliana embryos and seedlings without TPS1 are growth arrested and Arabidopsis seedlings accumulating T6P on a trehalose medium are growth arrested. Finally, the insight gained with respect to the possible role of T6P metabolism, where it is known to alter developmental and environmental responses of plants, is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana

Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...

متن کامل

Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana.

Genes for trehalose metabolism are widespread in higher plants. Insight into the physiological role of the trehalose pathway outside of resurrection plant species is lacking. To address this lack of insight, we express Escherichia coli genes for trehalose metabolism in Arabidopsis thaliana, which manipulates trehalose 6-phosphate (T6P) contents in the transgenic plants. Plants expressing otsA [...

متن کامل

The Sugar Sensor, Trehalose-6-Phosphate Synthase (Tps1), Regulates Primary and Secondary Metabolism during Infection by the Rice Blast Fungus: Will Magnaporthe oryzaeâ•Žs â•œSweet Toothâ•š become Its â•œAchillesâ•Ž Heelâ•š?

The Sugar Sensor, Trehalose-6-Phosphate Synthase (Tps1), Regulates Primary and Secondary Metabolism during Infection by the Rice Blast Fungus: Will Magnaporthe oryzae's " Sweet Tooth " become Its " Achilles' Heel " ?" (2011). Fungal Molecular Plant-Microbe Interactions. Paper 6. disparate cellular activities? To address this question, this review discusses our current understanding of tre-halos...

متن کامل

Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture

Carbohydrates, or sugars, regulate various aspects of plant growth through modulation of cell division and expansion. Besides playing essential roles as sources of energy for growth and as structural components of cells, carbohydrates also regulate the timing of expression of developmental programs. The disaccharide trehalose is used as an energy source, as a storage and transport molecule for ...

متن کامل

Trehalose metabolism and glucose sensing in plants.

Plants sense and respond to changes in carbon and nitrogen metabolites during development and growth according to the internal needs of their metabolism. Sugar-sensing allows plants to switch off photosynthesis when carbohydrates are abundant. These processes involve regulation of gene and protein activity to allow plants the efficient use of energy storage. Besides being a key element in carbo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 63 9  شماره 

صفحات  -

تاریخ انتشار 2012